The groupoids of adaptable separated graphs and their type semigroups (I)

Enrique Pardo

Universidad de Cádiz

Higher rank graphs: geometry, symmetry, dynamics ICMS, July 16, 2019.

イロト イポト イヨト イヨト

P. ARA, J. BOSA, E.P., A. SIMS, **The groupoids of adaptable separated graphs and their type semigroups**

イロト イポト イヨト イヨト

æ

arXiv:1904.05197v2 (math.RA).

- The problem
- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups
- 5 The tight groupoid of an adaptable separated graph

The problem The strategy

Outline

- The problem
- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups
- 5 The tight groupoid of an adaptable separated graph

The problem The strategy

Recently, great interest in the structure of the type semigroup $Typ(\mathcal{G})$ of an ample groupoid $\mathcal G$

Used to determine the stably finite versus purely infinite dichotomy for $C_r^*(\mathcal{G})$.

The problem The strategy

Recently, great interest in the structure of the type semigroup $Typ(\mathcal{G})$ of an ample groupoid $\mathcal G$

Used to determine the stably finite versus purely infinite dichotomy for $C^*_r(\mathcal{G})$.

The problem The strategy

The Tarski notion of paradoxicality, transfered to the *K*-theoretic context, played a major role in recent approaches:

- In the case of actions of a discrete group *G* on the Cantor set *X*, Rørdam & Sierakowski introduced a semigroup *S*(*X*, *G*) –an analog of Tarski's type semigroup– and tied the pure infiniteness of C(X) ×_r G to the existence of states on *S*(*X*, *G*).
- Rainone extended idea to a semigroup defined on K₀⁺(A), when this monoid enjoy the (Riesz) decomposition property.

The problem The strategy

The Tarski notion of paradoxicality, transferred to the *K*-theoretic context, played a major role in recent approaches:

- In the case of actions of a discrete group G on the Cantor set X, Rørdam & Sierakowski introduced a semigroup S(X,G) –an analog of Tarski's type semigroup– and tied the pure infiniteness of $C(X) \ltimes_r G$ to the existence of states on S(X,G).
- Rainone extended idea to a semigroup defined on K₀⁺(A), when this monoid enjoy the (Riesz) decomposition property.

The problem The strategy

The Tarski notion of paradoxicality, transfered to the *K*-theoretic context, played a major role in recent approaches:

- In the case of actions of a discrete group G on the Cantor set X, Rørdam & Sierakowski introduced a semigroup S(X,G) –an analog of Tarski's type semigroup– and tied the pure infiniteness of $C(X) \ltimes_r G$ to the existence of states on S(X,G).
- Rainone extended idea to a semigroup defined on K⁺₀(A), when this monoid enjoy the (Riesz) decomposition property.

The problem The strategy

 Rainone & Sims extended the idea, by defining a semigroup S(G) associated to a étale groupoid G (see also Bönicke & Li's work).

イロト イポト イヨト イヨト

æ

The problem The strategy

Realization Problem for von Neumann regular rings (exchange rings) [Goodearl]:

Which kind of conical refinement monoids are realizable as $\mathcal{V}(R)$ for a suitable von Neumann regular ring (exchange ring)?

Results of [Wehrung] restricts the scope of the problem to the case of M being <u>countable</u>.

イロト イポト イヨト イヨト

The problem The strategy

Realization Problem for von Neumann regular rings (exchange rings) [Goodearl]:

Which kind of conical refinement monoids are realizable as $\mathcal{V}(R)$ for a suitable von Neumann regular ring (exchange ring)?

Results of [Wehrung] restricts the scope of the problem to the case of M being <u>countable</u>.

・ロト ・ 一下・ ・ ヨト・

The problem The strategy

Realization Problem for von Neumann regular rings (exchange rings) [Goodearl]:

Which kind of conical refinement monoids are realizable as $\mathcal{V}(R)$ for a suitable von Neumann regular ring (exchange ring)?

Results of [Wehrung] restricts the scope of the problem to the case of M being <u>countable</u>.

イロト イポト イヨト イヨト

The problem The strategy

イロト イポト イヨト イヨト

Advances: it is possible to construct such a ring for monoids associated to (directed) graphs E.

[Ara-Moreno-P]: monoids M(E) associated to graphs are representable as \mathcal{V} -monoids for Leavitt path algebras $L_K(E)$.

[Ara-P]: characterized conical refinement monoids which are graph monoids.

The problem The strategy

(日) (四) (日) (日) (日)

Advances: it is possible to construct such a ring for monoids associated to (directed) graphs E.

[Ara-Moreno-P]: monoids M(E) associated to graphs are representable as \mathcal{V} -monoids for Leavitt path algebras $L_K(E)$.

[Ara-P]: characterized conical refinement monoids which are graph monoids.

The problem The strategy

イロト イポト イヨト イヨト

Advances: it is possible to construct such a ring for monoids associated to (directed) graphs E.

[Ara-Moreno-P]: monoids M(E) associated to graphs are representable as \mathcal{V} -monoids for Leavitt path algebras $L_K(E)$.

[Ara-P]: characterized conical refinement monoids which are graph monoids.

The problem The strategy

To solve the Realization problem in this case, the trick is to take suitable "universal localizations" $Q_{\cal K}(E)$.

These algebras are von Neumann regular rings. Moreover, $\mathcal{V}(Q_K(E)) \cong M(E)$.

Exist examples of countable, conical refinement monoids out of the scope of these construction [Ara-Perera-Werung].

イロト イポト イヨト イヨト

The problem The strategy

To solve the Realization problem in this case, the trick is to take suitable "universal localizations" $Q_K(E)$.

These algebras are von Neumann regular rings. Moreover, $\mathcal{V}(Q_K(E)) \cong M(E)$.

Exist examples of countable, conical refinement monoids out of the scope of these construction [Ara-Perera-Werung].

(日) (四) (日) (日) (日)

The problem The strategy

To solve the Realization problem in this case, the trick is to take suitable "universal localizations" $Q_K(E)$.

These algebras are von Neumann regular rings. Moreover, $\mathcal{V}(Q_K(E)) \cong M(E)$.

Exist examples of countable, conical refinement monoids out of the scope of these construction [Ara-Perera-Werung].

イロト イポト イヨト イヨト

The problem The strategy

CONNECTION: It is known $\mathcal{V}(L_K(E)) \cong M(E) \cong \operatorname{Typ}(\mathcal{G}_E)$.

A possibility for extending the above result is to work with a monoid M such that there is an algebra A and a groupoid \mathcal{G}_A with:

• $M \cong \operatorname{Typ}(\mathcal{G}_A).$

 offastilasol lashevinu taluger nnamuel Nov a si enerti ● .(2A)\$(film ¹~3A)

The problem The strategy

ヘロト ヘアト ヘビト ヘビト

CONNECTION: It is known $\mathcal{V}(L_K(E)) \cong M(E) \cong \operatorname{Typ}(\mathcal{G}_E)$.

A possibility for extending the above result is to work with a monoid M such that there is an algebra A and a groupoid \mathcal{G}_A with:

 $\bigcirc M \cong \operatorname{Typ}(\mathcal{G}_A).$

• there is a von Neumann regular universal localization $A\Sigma^{-1}$ with $\mathcal{V}(A\Sigma^{-1}) \cong \text{Typ}(\mathcal{G}_A)$.

CONNECTION: It is known $\mathcal{V}(L_K(E)) \cong M(E) \cong \text{Typ}(\mathcal{G}_E)$.

A possibility for extending the above result is to work with a monoid M such that there is an algebra A and a groupoid \mathcal{G}_A with:

$M \cong \operatorname{Typ}(\mathcal{G}_A).$

2 there is a von Neumann regular universal localization $A\Sigma^{-1}$ with $\mathcal{V}(A\Sigma^{-1}) \cong \operatorname{Typ}(\mathcal{G}_A)$.

イロト イポト イヨト イヨト

CONNECTION: It is known $\mathcal{V}(L_K(E)) \cong M(E) \cong \text{Typ}(\mathcal{G}_E)$.

A possibility for extending the above result is to work with a monoid M such that there is an algebra A and a groupoid \mathcal{G}_A with:

$$M \cong \operatorname{Typ}(\mathcal{G}_A).$$

2 there is a von Neumann regular universal localization $A\Sigma^{-1}$ with $\mathcal{V}(A\Sigma^{-1}) \cong \operatorname{Typ}(\mathcal{G}_A)$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

The problem The strategy

What we will show in these two talks is that the previous schema works for conical, finitely generated refinement monoids.

The problem The strategy

Let me outline which is the strategy we follow for fill all the gaps.

(1) Basic tool: use separated graphs (E, C), because for any countable conical monoid M there exists (E, C) such that $M \cong M(E, C)$ [Ara-Goodearl].

(2) For each conical, finitely generated refinement monoid M, construct a finite *I*-system \mathcal{J} so that $M \cong M(\mathcal{J})$ [Ara-P].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

The problem The strategy

Let me outline which is the strategy we follow for fill all the gaps.

(1) Basic tool: use separated graphs (E, C), because for any countable conical monoid M there exists (E, C) such that $M \cong M(E, C)$ [Ara-Goodearl].

(2) For each conical, finitely generated refinement monoid M, construct a finite *I*-system \mathcal{J} so that $M \cong M(\mathcal{J})$ [Ara-P].

・ロト ・ 同ト ・ ヨト ・

Let me outline which is the strategy we follow for fill all the gaps.

(1) Basic tool: use separated graphs (E, C), because for any countable conical monoid M there exists (E, C) such that $M \cong M(E, C)$ [Ara-Goodearl].

(2) For each conical, finitely generated refinement monoid M, construct a finite *I*-system \mathcal{J} so that $M \cong M(\mathcal{J})$ [Ara-P].

イロト イポト イヨト イヨト

The problem The strategy

(3) Given any finite *I*-system \mathcal{J} , construct an special separated graph (E, C) such that $M(E, C) \cong M(\mathcal{J})$ (this is an <u>adaptable</u> separated graph).

(4) Use the set of basic partial isometries of $L_K(E, C)$, and enlarge it for constructing an inverse semigroup S(E, C).

(3) Given any finite *I*-system \mathcal{J} , construct an special separated graph (E, C) such that $M(E, C) \cong M(\mathcal{J})$ (this is an <u>adaptable</u> separated graph).

(4) Use the set of basic partial isometries of $L_K(E, C)$, and enlarge it for constructing an inverse semigroup S(E, C).

The problem The strategy

(5) Determine the topological space of tight filters $\hat{\mathcal{E}}_{\text{tight}}$ associated to the semilattice of idempotents of S(E, C), and define a (partial) action $S(E, C) \frown \hat{\mathcal{E}}_{\text{tight}}$.

(6) Construct the Exel's tight groupoid $\mathcal{G}(E, C)$ for this partial action, and determine some basic properties.

The problem The strategy

(5) Determine the topological space of tight filters $\hat{\mathcal{E}}_{\text{tight}}$ associated to the semilattice of idempotents of S(E, C), and define a (partial) action $S(E, C) \frown \hat{\mathcal{E}}_{\text{tight}}$.

(6) Construct the Exel's tight groupoid $\mathcal{G}(E, C)$ for this partial action, and determine some basic properties.

The problem The strategy

イロト イポト イヨト イヨト

1

IN THE SECOND TALK

(7) Construct the Steinberg algebra $A_K(\mathcal{G}(E, C))$, and show that it is isomorphic to the algebra $\mathcal{S}_K(E, C)$ defined for generators & relations of S(E, C).

(8) Prove that $\operatorname{Typ}(\mathcal{G}(E,C)) \cong M(E,C)$.

The problem The strategy

イロト イポト イヨト イヨト

э.

IN THE SECOND TALK

(7) Construct the Steinberg algebra $A_K(\mathcal{G}(E, C))$, and show that it is isomorphic to the algebra $\mathcal{S}_K(E, C)$ defined for generators & relations of S(E, C).

(8) Prove that $\operatorname{Typ}(\mathcal{G}(E,C)) \cong M(E,C)$.

The problem The strategy

IN THE SECOND TALK

(7) Construct the Steinberg algebra $A_K(\mathcal{G}(E, C))$, and show that it is isomorphic to the algebra $\mathcal{S}_K(E, C)$ defined for generators & relations of S(E, C).

(8) Prove that $\operatorname{Typ}(\mathcal{G}(E,C)) \cong M(E,C)$.

・ロト・西ト・ヨト・ヨー シック・

The problem The strategy

(9) Construct a von Neumann regular universal localization $Q_K(E,C)$ of $\mathcal{S}_K(E,C)$.

(10) Use a deconstruction (pullback) - reconstruction (pushout) procedure to show that $\mathcal{V}(Q_K(E,C)) \cong \text{Typ}(\mathcal{G}(E,C))$.

The problem The strategy

ヘロト 人間 とくほとくほとう

(9) Construct a von Neumann regular universal localization $Q_K(E,C)$ of $\mathcal{S}_K(E,C)$.

(10) Use a deconstruction (pullback) - reconstruction (pushout) procedure to show that $\mathcal{V}(Q_K(E,C)) \cong \text{Typ}(\mathcal{G}(E,C))$.

- The problem
- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups
- 5 The tight groupoid of an adaptable separated graph

Definition

A commutative monoid M is *conical* if, for all x, y in M, x + y = 0 only when x = y = 0.

Definition

M is a *refinement monoid* if, for all *a*, *b*, *c*, *d* in *M* such that a + b = c + d, there exist *w*, *x*, *y*, *z* in *M* such that a = w + x, b = y + z, c = w + y and d = x + z.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

Definition

A commutative monoid M is *conical* if, for all x, y in M, x + y = 0 only when x = y = 0.

Definition

M is a *refinement monoid* if, for all *a*, *b*, *c*, *d* in *M* such that a + b = c + d, there exist *w*, *x*, *y*, *z* in *M* such that a = w + x, b = y + z, c = w + y and d = x + z.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ● ●

A basic example of a refinement monoid is the monoid

$$M(E) = \left\langle a_v(v \in E^0) : a_v = \sum_{e \in s^{-1}(v)} a_{r(e)} \right\rangle$$

associated to a countable row-finite graph E.

If $x, y \in M$, $x \leq y$ if exists $z \in M$ such that x + z = y.

Definition

An element $p \in M$ is a *prime* if p is not invertible in M, and, whenever $p \leq a + b$ for $a, b \in M$, then either $p \leq a$ or $p \leq b$.

Definition

A commutative monoid M is primely generated if every non-invertible $x \in M$ is a finite sum of prime elements of M.

If $x, y \in M$, $x \leq y$ if exists $z \in M$ such that x + z = y.

Definition

An element $p \in M$ is a *prime* if p is not invertible in M, and, whenever $p \leq a + b$ for $a, b \in M$, then either $p \leq a$ or $p \leq b$.

Definition

A commutative monoid M is primely generated if every non-invertible $x \in M$ is a finite sum of prime elements of M.

If $x, y \in M$, $x \leq y$ if exists $z \in M$ such that x + z = y.

Definition

An element $p \in M$ is a *prime* if p is not invertible in M, and, whenever $p \leq a + b$ for $a, b \in M$, then either $p \leq a$ or $p \leq b$.

Definition

A commutative monoid M is primely generated if every non-invertible $x \in M$ is a finite sum of prime elements of M.

Definition

An element $x \in M$ is:

[Bookfield]: any element of a primely generated refinement monoid is either free or regular.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

Introducti	
Monoids and grap	hs
Adaptable separated grap	hs
Inverse semigrou	ps
The tight groupoid of an adaptable separated gra	ph

An element $x \in M$ is:

free if $nx \leq mx$ implies $n \leq m$, for $n, m \in \mathbb{N}$.

[Bookfield]: any element of a primely generated refinement monoid is either free or regular.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Introduct	ion
Monoids and gra	hs
Adaptable separated gra	bhs
Inverse semigro	ips
The tight groupoid of an adaptable separated gra	iph

An element $x \in M$ is:

- regular if $2x \le x$.
- 2) free if $nx \leq mx$ implies $n \leq m$, for $n, m \in \mathbb{N}$.

[Bookfield]: any element of a primely generated refinement monoid is either free or regular.

Introduction
Monoids and graphs
Adaptable separated graphs
Inverse semigroups
The tight groupoid of an adaptable separated graph

An element $x \in M$ is:

• *regular* if
$$2x \le x$$
.

2) free if $nx \leq mx$ implies $n \leq m$, for $n, m \in \mathbb{N}$.

[Bookfield]: any element of a primely generated refinement monoid is either free or regular.

イロン イボン イヨン イヨン

ъ

Let M be a finitely generated conical refinement monoid. We will express M in terms of "generalized graphs":

Definition (Ara-Goodearl)

A separated graph is a pair (E, C) where E is a graph, $C = \bigsqcup_{v \in E^0} C_v$, and C_v is a partition of $s^{-1}(v)$ (into pairwise disjoint nonempty subsets) for every vertex v.

Let M be a finitely generated conical refinement monoid. We will express M in terms of "generalized graphs":

Definition (Ara-Goodearl)

A separated graph is a pair (E, C) where E is a graph, $C = \bigsqcup_{v \in E^0} C_v$, and C_v is a partition of $s^{-1}(v)$ (into pairwise disjoint nonempty subsets) for every vertex v.

The constructions we introduce revert to existing ones in case $C_v = \{s^{-1}(v)\}$ for each $v \in E^0$. We refer to a *non-separated* graph in that situation.

We assume throughout that (E, C) is *finitely separated*, i.e., $|X| < \infty$ for all $X \in C$.

The constructions we introduce revert to existing ones in case $C_v = \{s^{-1}(v)\}$ for each $v \in E^0$. We refer to a *non-separated* graph in that situation.

We assume throughout that (E, C) is *finitely separated*, i.e., $|X| < \infty$ for all $X \in C$.

Let (E, C) be a separated graph. Its monoid is

$$M(E,C) = \left\langle a_v(v \in E^0) : a_v = \sum_{e \in X} a_{r(e)}, \forall X \in C_v, \forall v \in E^0 \right\rangle.$$

Theorem (Ara-Goodearl)

Every finitely generated conical monoid is M(E, C) for a suitable separated graph (E, C).

Let (E, C) be a separated graph. Its monoid is

$$M(E,C) = \left\langle a_v(v \in E^0) : a_v = \sum_{e \in X} a_{r(e)}, \forall X \in C_v, \forall v \in E^0 \right\rangle.$$

Theorem (Ara-Goodearl)

Every finitely generated conical monoid is M(E, C) for a suitable separated graph (E, C).

Definition

The Leavitt path algebra of the separated graph (E, C) over a field K is the *-algebra $L_K(E, C)$ with generators $\{v, e \mid v \in E^0, e \in E^1\}$, subject to the following relations: (V) $vv' = \delta_{v,v'}v$ for all $v, v' \in E^0$, (E) s(e)e = er(e) = e for all $e \in E^1$, (SCK1) $e^*e' = \delta_{e,e'}r(e)$ for all $e, e' \in X, X \in C$, and (SCK2) $v = \sum_{e \in X} ee^*$ for every $X \in C_v, v \in E^0$.

Theorem (Ara-Goodearl)

For any separated graph (E, C),

$\mathcal{V}(L_K(E,C)) \cong M(E,C).$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups
- 5 The tight groupoid of an adaptable separated graph

[Pierce]: Every conical primely generated antisymmetric monoid can be represented as a semilattice (a poset with an order-absorbing relation).

[Dobbertin]: Every primely generated conical regular refinement monoid can be represented as a semilattice of finitely generated abelian groups (a sort of partial order of finitely generated abelian groups).

[Pierce]: Every conical primely generated antisymmetric monoid can be represented as a semilattice (a poset with an order-absorbing relation).

[Dobbertin]: Every primely generated conical regular refinement monoid can be represented as a semilattice of finitely generated abelian groups (a sort of partial order of finitely generated abelian groups).

[Ara-P]: Any primely generated refinement monoid M can be represented as a sort of semilattice of free & regular archimedean semigroups, via an *I*-system \mathcal{J} .

イロト イポト イヨト イヨト

This construction generalizes Pierce's and Dobbertin's constructions.

[Ara-P]: Any primely generated refinement monoid M can be represented as a sort of semilattice of free & regular archimedean semigroups, via an *I*-system \mathcal{J} .

イロト イポト イヨト イヨト

This construction generalizes Pierce's and Dobbertin's constructions.

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} \, (i < j))$$

is given by the following data:

(b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} \ (i < j))$$

is given by the following data:

- (a) A partition $I = I_{\text{free}} \sqcup I_{\text{reg}}$.
- (b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:
 - (1) For $i \in I_{reg}$, set $M_i = G_i$, and $G_i = G_i = M_i$.
- (c) A family of semigroup homomorphisms $\varphi_{ji} \colon M_i \to G_j$ for all i < j, satisfying suitable properties.

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} (i < j))$$

is given by the following data:

- (a) A partition $I = I_{\text{free}} \sqcup I_{\text{reg}}$.
- (b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:

(1) For $i \in I_{reg}$, set $M_i = G_i$, and $\widehat{G}_i = G_i = M_i$.

(2) For $i \in I_{\text{free}}$, set $M_i = \mathbb{N} \times G_i$, and $\widehat{G}_i = \mathbb{Z} \times G_i$

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} \ (i < j))$$

is given by the following data:

- (a) A partition $I = I_{\text{free}} \sqcup I_{\text{reg}}$.
- (b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:

(1) For
$$i \in I_{reg}$$
, set $M_i = G_i$, and $\widehat{G}_i = G_i = M_i$.

(2) For $i \in I_{\text{free}}$, set $M_i = \mathbb{N} \times G_i$, and $G_i = \mathbb{Z} \times G_i$

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} \ (i < j))$$

is given by the following data:

(a) A partition $I = I_{\text{free}} \sqcup I_{\text{reg}}$.

(b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:

(1) For
$$i \in I_{reg}$$
, set $M_i = G_i$, and $\widehat{G}_i = G_i = M_i$.

(2) For $i \in I_{\text{free}}$, set $M_i = \mathbb{N} \times G_i$, and $\widehat{G}_i = \mathbb{Z} \times G_i$

Definition

Let $I = (I, \leq)$ be a poset. An *I*-system

$$\mathcal{J} = (I, \leq, (G_i)_{i \in I}, \varphi_{ji} \ (i < j))$$

is given by the following data:

(a) A partition $I = I_{\text{free}} \sqcup I_{\text{reg}}$.

(b) A family $\{G_i\}_{i \in I}$ of abelian groups, with:

(1) For
$$i \in I_{reg}$$
, set $M_i = G_i$, and $\widehat{G}_i = G_i = M_i$.

(2) For $i \in I_{\text{free}}$, set $M_i = \mathbb{N} \times G_i$, and $\widehat{G}_i = \mathbb{Z} \times G_i$

We attach to each finite *I*-system \mathcal{J} a conical, finitely generated <u>refinement</u> monoid $M(\mathcal{J})$.

 $M(\mathcal{J})$ is the monoid generated by the M_i s, with defining relations

 $x + y = x + \varphi_{ji}(y), \quad i < j, x \in M_j, y \in M_i.$

・ロト・西ト・モート ヨー うへの

We attach to each finite *I*-system \mathcal{J} a conical, finitely generated <u>refinement</u> monoid $M(\mathcal{J})$.

 $M(\mathcal{J})$ is the monoid generated by the M_i s, with defining relations

$$x + y = x + \varphi_{ji}(y), \quad i < j, x \in M_j, y \in M_i.$$

Theorem (Ara-P)

Let *M* be a conical, primely generated refinement monoid. Then, there exists an *I*-system \mathcal{J} such that $M \cong M(\mathcal{J})$.

Corollary (Ara-P)

Let M be a conical, finitely generated refinement monoid. Then, there exists a finite *I*-system \mathcal{J} such that $M \cong M(\mathcal{J})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Theorem (Ara-P)

Let *M* be a conical, primely generated refinement monoid. Then, there exists an *I*-system \mathcal{J} such that $M \cong M(\mathcal{J})$.

Corollary (Ara-P)

Let *M* be a conical, finitely generated refinement monoid. Then, there exists a finite *I*-system \mathcal{J} such that $M \cong M(\mathcal{J})$.

イロン 不得 とくほ とくほとう

Given any finite *I*-system \mathcal{J} , we attach to it a finitely separated graph (E, C) such that

 $M(E,C) \cong M(\mathcal{J}).$

・ロン・西方・ ・ ヨン・ ヨン・

3

This is done as follows.

Given any finite *I*-system \mathcal{J} , we attach to it a finitely separated graph (E, C) such that

 $M(E,C) \cong M(\mathcal{J}).$

・ロン・西方・ ・ ヨン・ ヨン・

3

This is done as follows.
The idea is to take a finitely separated graph (E, C) such that you can decompose it using the antisymmetrization $I = I_{\text{free}} \sqcup I_{\text{reg}}$ of (E^0, \leq) and a family of separated subgraphs $\{(E_p, C_p)\}_{p \in I}$ of E, so that:

- $E^0 = \bigsqcup_{p \in I} E^0_p.$
- All the connecting maps between E_ps go downwards on I.
- The form of (E_p, C_p) allows to recover the monoid M_t when computing its associated monoid.

The idea is to take a finitely separated graph (E, C) such that you can decompose it using the antisymmetrization $I = I_{\text{free}} \sqcup I_{\text{reg}}$ of (E^0, \leq) and a family of separated subgraphs $\{(E_p, C_p)\}_{p \in I}$ of E, so that:

- ② All the connecting maps between E_p s go downwards on I.
- 3 The form of (E_p, C_p) allows to recover the monoid M_i when computing its associated monoid.

The idea is to take a finitely separated graph (E, C) such that you can decompose it using the antisymmetrization $I = I_{\text{free}} \sqcup I_{\text{reg}}$ of (E^0, \leq) and a family of separated subgraphs $\{(E_p, C_p)\}_{p \in I}$ of E, so that:

- 2 All the connecting maps between E_p s go downwards on *I*.

If the form of (E_p, C_p) allows to recover the monoid M_i when computing its associated monoid.

The idea is to take a finitely separated graph (E, C) such that you can decompose it using the antisymmetrization $I = I_{\text{free}} \sqcup I_{\text{reg}}$ of (E^0, \leq) and a family of separated subgraphs $\{(E_p, C_p)\}_{p \in I}$ of E, so that:

- 2 All the connecting maps between E_p s go downwards on *I*.
- **③** The form of (E_p, C_p) allows to recover the monoid M_i when computing its associated monoid.

To be precise, an *adaptable separated graph* is a finitely separated graph (E, C) s.t:

(1) $I = E^0/\sim$ is the antisymmetrization of E^0 with respect to the pre-order $v \ge w$ iff there is a path $v \to w$. Then I is finite and $I = I_{\text{free}} \sqcup I_{\text{reg}}$.

(2) $E^0 = \bigsqcup_{p \in I} E_p^0$, where E_p is a strongly connected row-finite graph if $p \in I_{\text{reg}}$ and $E_p^0 = \{v^p\}$ is a single vertex if $p \in I_{\text{free}}$.

To be precise, an *adaptable separated graph* is a finitely separated graph (E, C) s.t:

(1) $I = E^0/\sim$ is the antisymmetrization of E^0 with respect to the pre-order $v \ge w$ iff there is a path $v \to w$. Then I is finite and $I = I_{\text{free}} \sqcup I_{\text{reg}}$.

(2) $E^0 = \bigsqcup_{p \in I} E_p^0$, where E_p is a strongly connected row-finite graph if $p \in I_{\text{reg}}$ and $E_p^0 = \{v^p\}$ is a single vertex if $p \in I_{\text{free}}$.

To be precise, an *adaptable separated graph* is a finitely separated graph (E, C) s.t:

(1) $I = E^0/\sim$ is the antisymmetrization of E^0 with respect to the pre-order $v \ge w$ iff there is a path $v \to w$. Then I is finite and $I = I_{\text{free}} \sqcup I_{\text{reg}}$.

(2) $E^0 = \bigsqcup_{p \in I} E_p^0$, where E_p is a strongly connected row-finite graph if $p \in I_{\text{reg}}$ and $E_p^0 = \{v^p\}$ is a single vertex if $p \in I_{\text{free}}$.

(3) For $v \in E_p^0$ with $p \in I_{\text{reg}}$, we have $|C_v| = 1$.

(4) For $p \in I_{\text{free}}$, we have that $s^{-1}(v^p) = \emptyset$ if and only if p is minimal in I. If p is not minimal there is a positive integer k(p) such that $C_{v^p} = \{X_1^{(p)}, \ldots, X_{k(p)}^{(p)}\}$, where each $X_i^{(p)}$ is of the form

$$X_i^{(p)} = \{ \alpha(p, i), \beta(p, i, 1), \beta(p, i, 2), \dots, \beta(p, i, g(p, i)) \},\$$

for some $g(p,i) \ge 1$, where $\alpha(p,i)$ is a loop, i.e., $s(\alpha(p,i)) = r(\alpha(p,i)) = v^p$, and $r(\beta(p,i,t)) \in E_q^0$ for q < p.

(3) For $v \in E_p^0$ with $p \in I_{reg}$, we have $|C_v| = 1$.

(4) For $p \in I_{\text{free}}$, we have that $s^{-1}(v^p) = \emptyset$ if and only if p is minimal in I. If p is not minimal there is a positive integer k(p) such that $C_{v^p} = \{X_1^{(p)}, \ldots, X_{k(p)}^{(p)}\}$, where each $X_i^{(p)}$ is of the form

 $X_i^{(p)} = \{ \alpha(p, i), \beta(p, i, 1), \beta(p, i, 2), \dots, \beta(p, i, g(p, i)) \},\$

for some $g(p,i) \ge 1$, where $\alpha(p,i)$ is a loop, i.e., $s(\alpha(p,i)) = r(\alpha(p,i)) = v^p$, and $r(\beta(p,i,t)) \in E_q^0$ for q < p.

(3) For
$$v \in E_p^0$$
 with $p \in I_{reg}$, we have $|C_v| = 1$.

(4) For $p \in I_{\text{free}}$, we have that $s^{-1}(v^p) = \emptyset$ if and only if p is minimal in I. If p is not minimal there is a positive integer k(p) such that $C_{v^p} = \{X_1^{(p)}, \ldots, X_{k(p)}^{(p)}\}$, where each $X_i^{(p)}$ is of the form

$$X_i^{(p)} = \{ \alpha(p, i), \beta(p, i, 1), \beta(p, i, 2), \dots, \beta(p, i, g(p, i)) \},\$$

for some $g(p, i) \ge 1$, where $\alpha(p, i)$ is a loop, i.e., $s(\alpha(p, i)) = r(\alpha(p, i)) = v^p$, and $r(\beta(p, i, t)) \in E_q^0$ for q < p.

Theorem

Let \mathcal{J} be a finite *I*-system. Then there is an adaptable separated graph (E, C) such that

$M(E,C) \cong M(\mathcal{J}).$

イロト イポト イヨト イヨト

3

Theorem

- If (E, C) is an adaptable separated graph, then M(E, C) is a refinement monoid.
- **(a)** For any finitely generated conical refinement monoid M, there exists an adaptable separated graph (E, C) such that $M \cong M(E, C)$.

So, adaptable separated graphs provide a suitable combinatorial input for our construction.

・ロト・日本・日本・日本・日本・今日・

Theorem

- If (E, C) is an adaptable separated graph, then M(E, C) is a refinement monoid.
- **(a)** For any finitely generated conical refinement monoid M, there exists an adaptable separated graph (E, C) such that $M \cong M(E, C)$.

イロト イポト イヨト イヨト

So, adaptable separated graphs provide a suitable combinatorial input for our construction.

- The problem
- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups
- 5 The tight groupoid of an adaptable separated graph

Given an adaptable separated graph as before, we want to associate a groupoid to it.

We will follow Exel's construction of the tight groupoid of an inverse semigroup, so that we need first to get an inverse semigroup S based on the paths on E.

For this, we also consider Cuntz-Krieger relations (SCK1)-(SCK2) as before ...

Given an adaptable separated graph as before, we want to associate a groupoid to it.

We will follow Exel's construction of the tight groupoid of an inverse semigroup, so that we need first to get an inverse semigroup S based on the paths on E.

For this, we also consider Cuntz-Krieger relations (SCK1)-(SCK2) as before ...

Given an adaptable separated graph as before, we want to associate a groupoid to it.

We will follow Exel's construction of the tight groupoid of an inverse semigroup, so that we need first to get an inverse semigroup S based on the paths on E.

For this, we also consider Cuntz-Krieger relations (SCK1)-(SCK2) as before ...

Given an adaptable separated graph as before, we want to associate a groupoid to it.

We will follow Exel's construction of the tight groupoid of an inverse semigroup, so that we need first to get an inverse semigroup S based on the paths on E.

For this, we also consider Cuntz-Krieger relations (SCK1)-(SCK2) as before ...

Definition

A semigroup T is an *inverse semigroup* if

- for every x in T, there exists a unique $x^* \in T$, such that $xx^*x = x$ and $x^*xx^* = x^*$,
- there exists a (necessarily unique) element 0 ∈ T, called the zero element, such that x0 = 0x = 0, for all x in T.

イロン イボン イヨン イヨン

Introduction	
Monoids and graphs	
Adaptable separated graphs	
Inverse semigroups	
The tight groupoid of an adaptable separated graph	

If T is an inverse semigroup, then the set of idempotents of T, $\mathcal{E} = \mathcal{E}(T)$, is a semilattice with ordering $e \leq f$ if and only if ef = e, and $e \wedge f = ef$.

Notation

If $p \in I$ is **non-minimal** and **free**, we denote by σ^p the map $\mathbb{N} \to \mathbb{N}$ given by

$$\sigma^p(i) = i + k(p) - 1.$$

Moreover, if $1 \le j \le k(p)$, we denote by σ_j^p the unique bijective, non-decreasing map from $\{1, \ldots, k(p)\} \setminus \{j\}$ onto $\{1, \ldots, k(p) - 1\}$.

Definition

Given an adaptable separated graph (E, C), denote by S(E, C) the *-semigroup (with 0) generated by

$$E^0 \cup E^1 \cup \{(t^v_i)^{\pm} \mid i \in \mathbb{N}, v \in E^0\}$$

イロト イポト イヨト イヨト

with the defining relations given below, except B1(ii)(d) and B2(1)(ii).

RELATIONS

イロト イポト イヨト イヨト 一臣

BLOCK 1: Tor all $v, w \in E^0$, we have $v \cdot w = \delta_{v,w}v$ and $v = v^*$. For all $e \in E^1$, we have: e = s(e)e = er(e) $e^*e = r(e)$ $e^*f = \delta_{e,f}r(e)$ if $e, f \in X \subseteq C_{s(e)}$. $v = \sum_{e \in X} ee^*$, for $X \in C_v, v \in E^0$.

BLOCK 2: (1) For each free prime $p \in I$ and i = 1, ..., k(p), we have: (1) For each free prime $p \in I$ and i = 1, ..., k(p), we have: (1) $\alpha(p, i)^* \alpha(p, i) = v^p$ (2) $\alpha(p, i) \alpha(p, i) = v^p$ (3) $\alpha(p, i) \alpha(p, i)^* = v^p - \sum_{t=1}^{g(p,i)} \beta(p, i, t) \beta(p, i, t)^*$ (3) For $i \neq j$, $\alpha(p, i) \alpha(p, j) = \alpha(p, j) \alpha(p, i)$, and $\alpha(p, i) \alpha(p, j)^* = \alpha(p, j)^* \alpha(p, i)$. (3) $\beta(p, i, s)^* \beta(p, j, t) = 0$ if either $i \neq j$, or i = j and $s \neq t$. (3) $\alpha(p, i)^* \beta(p, i, t) = 0 = \beta(p, i, t)^* \alpha(p, i)$ for all $1 \leq i \leq k(s)$

 $\label{eq:alpha} \begin{array}{l} \textcircled{0} \quad \alpha(p,i)^*\beta(p,i,t) = 0 = \beta(p,i,t)^*\alpha(p,i) \text{ for all } 1 \leq i \leq k(p) \\ \text{ and all } 1 \leq t \leq g(p,i). \end{array}$

(2) For the $\{t_i^v\}$, we impose the following relations:

() For each $v \in E^0$, $\{(t_i^v)^{\pm} : i \in \mathbb{N}\}$ is a family of mutually commuting elements such that

$$vt_i^v = t_i^v = t_i^v v, \qquad t_i^v (t_i^v)^{-1} = v = (t_i^v)^{-1} t_i^v, \qquad (t_i^v)^* = (t_i^v)^{-1}.$$

(1) If $p \in I$ is regular, $e \in E^1$ is such that $s(e) \in E_p^0$ and $i \in \mathbb{N}$,

$$t_i^{s(e)}e = et_i^{r(e)}.$$

If $p \in I$ is free, $i \in \mathbb{N}$, $1 \le j \le k(p)$ and $1 \le s \le g(p, j)$,

$$(t_i^{v^p})^{\pm}\beta(p,j,s) = \beta(p,j,s)(t_{\sigma^p(i)}^{r(\beta(p,j,s))})^{\pm},$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

If
$$p \in I$$
 is free, $i \neq j$, and $1 \leq s \leq g(p, j)$,
 $\alpha(p, i)\beta(p, j, s) = \beta(p, j, s)t_{\sigma_j^p(i)}^{r(\beta(p, j, s))}$

and

(iv)

$$\alpha(p,i)^*\beta(p,j,s) = \beta(p,j,s)(t_{\sigma_j^p(i)}^{r(\beta(p,j,s))})^{-1}.$$

We provide a different description of S(E, C). This will be given via the paths that one can intuitively associate to any adaptable separated graph.

Roughly, a finite path is as follows: consider a sequence of elements $p_1 > p_2 > \ldots > p_n$ of the poset *I*, and for each *i* a path γ_i in E_{p_i} ; we form a finite path by connecting the γ_i together via the connectors β . Diagrammatically, we may write

$$p_1 \curvearrowright^{\beta_{1,2}} p_2 \curvearrowright^{\beta_{2,3}} \ldots \curvearrowright^{\beta_{n-1,n}} p_n.$$

We now define the monomials as the possible multiplicative expressions one can form using generators (excluding connectors) corresponding to a given prime. They will be denoted by $\mathbf{m}(p)$ for $p \in I$. Namely,

(1) if p is a **free** prime, we define

$$\mathbf{m}(p) = (t_{i_1}^{v^p})^{d_1} \dots (t_{i_r}^{v^p})^{d_r} \prod_{j=1}^{k(p)} \alpha(p,j)^{k_j} (\alpha(p,j)^*)^{l_j}$$

for $d_1, \ldots, d_r \in \mathbb{Z} \setminus \{0\}, r \ge 0, k_j, l_j \ge 0$

(2) if p is a **regular** prime, we define

$$\mathbf{m}(p) = (t_{i_1}^v)^{d_1} \dots (t_{i_r}^v)^{d_r} \gamma \nu^*,$$

where γ, ν are paths of finite length in E_p satisfying $s(\gamma) = v$, $v \in E_p^0$, and $r(\gamma) = r(\nu)$.

Definition

S is the union of $\{0\}$ and the set of all triples $(\gamma, \mathbf{m}(p), \eta)$, where γ, η are finite paths, $\mathbf{m}(p)$ is a monomial at some prime $p \in I$, and $r(\gamma) = s(\mathbf{m}(p)), r(\eta) = r(\mathbf{m}(p))$.

イロト イポト イヨト イヨト

So, *S* consists of combinations $\gamma \mathbf{m}(p)\eta^*$ of a finite path, a monomial and the star of a finite path.

Definition

S is the union of $\{0\}$ and the set of all triples $(\gamma, \mathbf{m}(p), \eta)$, where γ, η are finite paths, $\mathbf{m}(p)$ is a monomial at some prime $p \in I$, and $r(\gamma) = s(\mathbf{m}(p)), r(\eta) = r(\mathbf{m}(p))$.

ヘロト 人間 とくほとく ほとう

So, *S* consists of combinations $\gamma \mathbf{m}(p)\eta^*$ of a finite path, a monomial and the star of a finite path.

Proposition

Let (E, C) be an adaptable separated graph. Then, there is a natural *-isomorphism $S(E, C) \cong S$.

The idempotents in S are of the form $\gamma {\bf m}(p)\gamma^*;$ moreover, the idempotents commute. So

Proposition

Let (E, C) be an adaptable separated graph. Then, S(E, C) is an inverse semigroup.

Proposition

Let (E, C) be an adaptable separated graph. Then, there is a natural *-isomorphism $S(E, C) \cong S$.

The idempotents in S are of the form $\gamma {\bf m}(p)\gamma^*;$ moreover, the idempotents commute. So

Proposition

Let (E, C) be an adaptable separated graph. Then, S(E, C) is an inverse semigroup.

Proposition

Let (E, C) be an adaptable separated graph. Then, there is a natural *-isomorphism $S(E, C) \cong S$.

The idempotents in S are of the form $\gamma {\bf m}(p)\gamma^*;$ moreover, the idempotents commute. So

Proposition

Let (E, C) be an adaptable separated graph. Then, S(E, C) is an inverse semigroup.
An inverse semigroup is E^* -unitary if given an idempotent e and an element s, if e = se then s is idempotent.

Proposition

Let (E, C) be an adaptable separated graph. Then the associated inverse semigroup S(E, C) is E^* -unitary.

This guarantees that the groupoid we will construct is Hausdorff.

(日) (四) (日) (日) (日)

An inverse semigroup is E^* -unitary if given an idempotent e and an element s, if e = se then s is idempotent.

Proposition

Let (E, C) be an adaptable separated graph. Then the associated inverse semigroup S(E, C) is E^* -unitary.

This guarantees that the groupoid we will construct is Hausdorff.

ヘロト ヘアト ヘビト ヘ

An inverse semigroup is E^* -unitary if given an idempotent e and an element s, if e = se then s is idempotent.

Proposition

Let (E, C) be an adaptable separated graph. Then the associated inverse semigroup S(E, C) is E^* -unitary.

This guarantees that the groupoid we will construct is Hausdorff.

ヘロト ヘアト ヘビト ヘ

- The problem
- The strategy
- 2 Monoids and graphs
- 3 Adaptable separated graphs
- Inverse semigroups

5 The tight groupoid of an adaptable separated graph

Definition

A groupoid \mathcal{G} is an small category in which every homomorphism is an isomorphism. We will denote by $\mathcal{G}^{(0)}$ its set of units, and by $r, s : \mathcal{G} \to \mathcal{G}^{(0)}$ the range and source maps $r(\gamma) = \gamma \gamma^*$ and $s(\gamma) = \gamma^* \gamma$.

Definition

A *topological groupoid* is a groupoid endowed with a topology under which multiplication and inversion are continuous maps; in particular, r and s are continuous maps.

Definition

A topological groupoid \mathcal{G} is said to be *étale* if r (and so s) is a local homeomorphism from \mathcal{G} to $\mathcal{G}^{(0)}$.

If \mathcal{G} is étale, then $\mathcal{G}^{(0)}$ is open. We will always asume that our groupoids are étale, locally compact, and $\mathcal{G}^{(0)}$ is Hausdorff in the relative topology.

・ロト・西ト・モート ヨー うらぐ

Definition

A topological groupoid \mathcal{G} is said to be *étale* if r (and so s) is a local homeomorphism from \mathcal{G} to $\mathcal{G}^{(0)}$.

If \mathcal{G} is étale, then $\mathcal{G}^{(0)}$ is open. We will always asume that our groupoids are étale, locally compact, and $\mathcal{G}^{(0)}$ is Hausdorff in the relative topology.

・ロト・日本・日本・日本・日本・日本

Definition

A locally compact étale groupoid \mathcal{G} is said to be *ample* if $\mathcal{G}^{(0)}$ is totally disconnected.

This is equivalent to assume that the topology of \mathcal{G} has a basis of open compact bisections. Here, a bisection is a subset $U \subseteq \mathcal{G}$ such that r and s are injective on U.

Definition

A locally compact étale groupoid G is said to be *ample* if $G^{(0)}$ is totally disconnected.

This is equivalent to assume that the topology of \mathcal{G} has a basis of open compact bisections. Here, a bisection is a subset $U \subseteq \mathcal{G}$ such that r and s are injective on U.

・ロト・西ト・西ト・西ト・日・

Definition

A locally compact étale groupoid G is said to be *ample* if $G^{(0)}$ is totally disconnected.

This is equivalent to assume that the topology of \mathcal{G} has a basis of open compact bisections. Here, a bisection is a subset $U \subseteq \mathcal{G}$ such that r and s are injective on U.

Definition

Let T be an inverse semigroup, and let \mathcal{E} be its semilattice of idempotents. A filter in \mathcal{E} is a nonempty subset $\eta \subseteq \mathcal{E}$ such that:

- $0 \not\in \eta,$
- 2 closed under \land ,

We denote the set of filters by $\widehat{\mathcal{E}}_0.$ This is a locally compact totally disconnected Hausdorff space when equipped with the cylinder topology:

Given finite subsets $X, Y \subseteq \mathcal{E}$, consider the set

$$U(X,Y) = \{ \eta \in \hat{\mathcal{E}}_0 : X \subseteq \eta, \ Y \subseteq \mathcal{E} \setminus \eta \}.$$

ヘロト ヘアト ヘヨト ヘ

Then each U(X, Y) is an open set and the collection of all such is easily seen to form a basis for the topology of $\hat{\mathcal{E}}_0$.

We denote the set of filters by $\widehat{\mathcal{E}}_0$. This is a locally compact totally disconnected Hausdorff space when equipped with the cylinder topology:

Given finite subsets $X, Y \subseteq \mathcal{E}$, consider the set

$$U(X,Y) = \{ \eta \in \hat{\mathcal{E}}_0 : X \subseteq \eta, \ Y \subseteq \mathcal{E} \setminus \eta \}.$$

Then each U(X, Y) is an open set and the collection of all such is easily seen to form a basis for the topology of $\hat{\mathcal{E}}_0$.

We denote the set of filters by $\widehat{\mathcal{E}}_0$. This is a locally compact totally disconnected Hausdorff space when equipped with the cylinder topology:

Given finite subsets $X, Y \subseteq \mathcal{E}$, consider the set

$$U(X,Y) = \{ \eta \in \hat{\mathcal{E}}_0 : X \subseteq \eta, \ Y \subseteq \mathcal{E} \setminus \eta \}.$$

Then each U(X, Y) is an open set and the collection of all such is easily seen to form a basis for the topology of $\hat{\mathcal{E}}_0$.

Definition

A filter η is an *ultrafilter* if it is not properly contained in another filter. We denote $\widehat{\mathcal{E}}_{\infty} \subseteq \widehat{\mathcal{E}}_0$ the space of ultrafilters.

Definition

The set $\widehat{\mathcal{E}}_{\mathsf{tight}}$ of *tight filters* is the closure of $\widehat{\mathcal{E}}_\infty$ into $\widehat{\mathcal{E}}_0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Definition

A filter η is an *ultrafilter* if it is not properly contained in another filter. We denote $\widehat{\mathcal{E}}_{\infty} \subseteq \widehat{\mathcal{E}}_0$ the space of ultrafilters.

イロト イポト イヨト イヨト

Definition

The set $\widehat{\mathcal{E}}_{\text{tight}}$ of *tight filters* is the closure of $\widehat{\mathcal{E}}_{\infty}$ into $\widehat{\mathcal{E}}_{0}$.

Definition

We define a standard partial action of T on $\widehat{\mathcal{E}}_0$ as follows:

• For each
$$e \in \mathcal{E}$$
, $D_e^\beta = \{\eta \in \widehat{\mathcal{E}}_0 : e \in \eta\}$,

$$\begin{array}{ll} \textbf{ iven } s \in T, \\ \beta_s : D_{s^*s}^{\beta} & \longrightarrow D_{ss^*}^{\beta} \\ \eta & \longrightarrow \beta_s(\eta) = \{ f \in \mathcal{E} : f \geq ses^* \text{ for every } e \in \eta \} \end{array}$$

 β restricts to an action of T on ultrafilters and on tight filters.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

We define a standard partial action of T on $\widehat{\mathcal{E}}_0$ as follows:

• For each
$$e \in \mathcal{E}$$
, $D_e^\beta = \{\eta \in \widehat{\mathcal{E}}_0 : e \in \eta\}$,

$$\begin{array}{c} \textbf{@} \quad \textbf{Given } s \in T, \\ \beta_s : D_{s^*s}^\beta & \longrightarrow D_{ss^*}^\beta \\ \eta & \longrightarrow \beta_s(\eta) = \{f \in \mathcal{E} : f \geq ses^* \text{ for every } e \in \eta \} \end{array}$$

 β restricts to an action of T on ultrafilters and on tight filters.

イロト イポト イヨト イヨト

э

Consider the transformation groupoid $T \times \widehat{\mathcal{E}}_{tight}$.

The elements are the pairs (s, ω) such that $\omega \in \mathsf{Dom}(s) = D_{s^*s}^{\beta}$.

We fix the germ relation: $(s, \omega) \sim (t, \eta)$ if $\omega = \eta$ and there exists an idempotent $e \leq t, s$ with $\omega \in \text{Dom}(e)$ such that se = te.

Consider the transformation groupoid $T \times \widehat{\mathcal{E}}_{tight}$.

The elements are the pairs (s, ω) such that $\omega \in \text{Dom}(s) = D_{s^*s}^{\beta}$.

We fix the germ relation: $(s, \omega) \sim (t, \eta)$ if $\omega = \eta$ and there exists an idempotent $e \leq t, s$ with $\omega \in \text{Dom}(e)$ such that se = te.

Consider the transformation groupoid $T \times \widehat{\mathcal{E}}_{tight}$.

The elements are the pairs (s, ω) such that $\omega \in \text{Dom}(s) = D_{s^*s}^{\beta}$.

We fix the germ relation: $(s, \omega) \sim (t, \eta)$ if $\omega = \eta$ and there exists an idempotent $e \leq t, s$ with $\omega \in \text{Dom}(e)$ such that se = te.

Definition (Tight groupoid of the inverse semigroup T)

Define
$$\mathcal{G}_{\text{tight}}(T) = T \times \widehat{\mathcal{E}}_{\text{tight}} / \sim$$
, with:
1 $d([s,x]) = x$ and $r([s,x]) = \beta_s(x)$,
2 $[s,z] \cdot [t,x] = [st,x]$ if and only if $z = \beta_t(x)$
3 $[s,x]^{-1} = [s^*, \beta_s(x)]$,
3 $\mathcal{G}_{\text{tight}}^{(0)}(T) = \{[e,x] : e \in \mathcal{E}\} \cong \widehat{\mathcal{E}}_{\text{tight}}$

 $\mathcal{G}_{\mathsf{tight}}(T)$ is ample, but in general is neither Hausdorff nor amenable.

Definition (Tight groupoid of the inverse semigroup T)

Define
$$\mathcal{G}_{\text{tight}}(T) = T \times \widehat{\mathcal{E}}_{\text{tight}} / \sim$$
, with:
• $d([s, x]) = x \text{ and } r([s, x]) = \beta_s(x),$
• $[s, z] \cdot [t, x] = [st, x] \text{ if and only if } z = \beta_t(x),$
• $[s, x]^{-1} = [s^*, \beta_s(x)],$
• $\mathcal{G}_{\text{tight}}^{(0)}(T) = \{[e, x] : e \in \mathcal{E}\} \cong \widehat{\mathcal{E}}_{\text{tight}}$

 $\mathcal{G}_{\text{tight}}(T)$ is ample, but in general is neither Hausdorff nor amenable.

Given $s \in T$, $U \subseteq D_{s^*s}$ open subset, the set

 $\Theta(s,U)=\{[s,\xi]:\xi\in U\}$

is an open compact bisection.

In fact, the set $\{\Theta(s, U) : s \in T, U \subseteq D_{s^*s}\}$ is a basis of the topology of $\mathcal{G}_{\text{tight}}(T)$.

Given $s \in T$, $U \subseteq D_{s^*s}$ open subset, the set

 $\Theta(s,U)=\{[s,\xi]:\xi\in U\}$

is an open compact bisection.

In fact, the set $\{\Theta(s, U) : s \in T, U \subseteq D_{s^*s}\}$ is a basis of the topology of $\mathcal{G}_{\text{tight}}(T)$.

Let us identify what happens in the case of T being S(E, C).

Let γ be a finite path. A **semifinite path** μ starting at γ is one of the following:

(1) If $r(\gamma) = v^p$, with p a free prime, then

$$u = \gamma \prod_{j=1}^{k(p)} \alpha(p, j)^{k_j},$$

where $0 \le k_j \le \infty$ for all $j \in \{1, ..., k(p)\}$. We say that μ is an infinite path if $k_j = \infty$ for all $j \in \{1, ..., k(p)\}$.

(2) If $r(\gamma) = v$ with $v \in E_p^0$ and p a regular prime, then

$$\mu = \gamma \lambda,$$

where λ is either a finite or an infinite path in the graph E_p . We say that μ is an **infinite path** if λ is an infinite path in E_p .

Theorem

Let S be the collection of all semifinite paths. Then

- There is a bijective correspondence $\varphi \colon S \to \hat{\mathcal{E}}_0$.
- 2 φ restricts to a bijection between the set of infinite paths and the set $\hat{\mathcal{E}}_{\infty}$ of ultrafilters.
- Solution The space $\hat{\mathcal{E}}_{\infty}$ of ultrafilters is closed in the space $\hat{\mathcal{E}}_{0}$ of filters. Consequently, $\hat{\mathcal{E}}_{\infty} = \hat{\mathcal{E}}_{tight}$.

イロト イポト イヨト イヨト

Definition

We denote by \mathcal{P} the set of semifinite paths of the form $\mu = \gamma \lambda$, where γ is a finite path, and λ is a path of finite length in the component of a regular prime, or $\lambda = \prod_{j=1}^{k(p)} \alpha(p, j)^{k_j}$ for $k_j \in \mathbb{Z}^+$, $1 \leq j \leq k(p)$ for a free prime p.

Notice that every $e \in \mathcal{E}$ is of the form $e(\mu)$ for a unique $\mu \in \mathcal{P}$. Accordingly, elements of \mathcal{P} will be called \mathcal{E} -paths.

ヘロン 人間 とくほど くほどう

For $\mu \in \mathcal{P}$, write

$$\mathcal{Z}(\mu) = \{ \eta \in \hat{\mathcal{E}}_{\infty} \mid \mu \mu^* \in \eta \}.$$

Depending on the situation, $\mathcal{Z}(\mu)$ might also be denoted by the idempotent it determines, i.e., $\mathcal{Z}(e(\mu))$. Notice that $\mathcal{Z}(\mu) = \mathcal{U}(\{\mu\mu^*\}, \emptyset) \cap \hat{\mathcal{E}}_{\infty}$.

Corollary

The space $\hat{\mathcal{E}}_{\infty}$ of ultrafilters admits a basis of compact open subsets, namely the family $\{\mathcal{Z}(\mu)\}_{\mu\in\mathcal{P}}$. Moreover, every compact open subset of $\hat{\mathcal{E}}_{\infty}$ is a finite disjoint union of sets of the form $\mathcal{Z}(\mu)$, for $\mu \in \mathcal{P}$.

Corollary

The set $\{\Theta(\mu\mu^*, \mathcal{Z}(\mu)) : \mu \in \mathcal{P}\}$ is a basis of open compact bisections of the tight groupoid $\mathcal{G}(E, C) := \mathcal{G}_{tight}(S(E, C)).$

Since S(E, C) is E^* -unitary, we conclude by results of [Exel]

イロト イポト イヨト イヨト

Proposition

If (E, C) is a finitely separated graph, then $\mathcal{G}(E, C)$ is a Hausdorff groupoid.

By using a "graph-goupoid" type picture of $\mathcal{G}(E,C),$ we are able to prove

Proposition

Let (E, C) be an adaptable separated graph. The groupoid $\mathcal{G}(E, C)$ is amenable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

The groupoids of adaptable separated graphs and their type semigroups (I)

Enrique Pardo

Universidad de Cádiz

Higher rank graphs: geometry, symmetry, dynamics ICMS, July 16, 2019.

イロト イポト イヨト イヨト